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The present work deals with the motion of a Taylor bubble rising through vertical oscillating pipes. The
aim is to perform a more detailed and quantitative study of this unsteady flow, still seldom addressed in
the literature. The investigation is restricted to high Reynolds numbers to understand inertia effects.
Experimental results are provided for two different configurations: (1) pipes with two different inner
diameters (9.8 mm and 20 mm) filled with water, (2) the thinner pipe (D ¼ 9:8 mmÞ filled with four
low viscous fluids. So the Bond number Bo based on the steady rise velocity varies from 13 to 57, where
the effects of surface tension can be considered. The bubble trajectory is tracked by using a high-speed
video camera. The average terminal and fluctuating velocity, as well as the phase shift with the oscillating
plate are obtained by using image processing. The main results show that for weak acceleration, the mean
velocity decreases with the relative acceleration as the fluctuating velocity increases in proportion to this
acceleration. Beyond a critical relative acceleration, the average velocity increases and the fluctuating
velocity increase seems to slow down. Additionally, comparisons are made with experimental results
of Brannock and Kubie [Brannock, D., Kubie, J., 1996. Velocity of long bubbles in oscillating vertical pipes.
Int. J. Multiphase Flow 22, 1031–1034] and numerical results of Clanet et al. [Clanet, C., Heraud, P., Searby,
G., 2004. On the motion of bubbles in vertical tubes of arbitrary cross-sections: some complements to the
Dumitrescu Taylor problem. J. Fluid Mech. 19, 359–376].

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction rates of the two phases. White and Beardmore (1962) established
Among two-phase flow regimes in a vertical pipe, slug flow ap-
pears in a very wide range of flowing conditions. This kind of flow
is characterized by large elongated bubbles, also called Taylor bub-
bles or gas slugs, which nearly occupy the entire cross section of
the pipe. A thin film of liquid flows between the gas interface
and the pipe wall.

Slug flows occur in several industrial applications. It is useful in
desalination industry, in heat exchangers, boilers and heat pipes in
order to improve the efficiency by increasing the mass and heat
transfer. Slug flow is also widely encountered in the oil extraction
industry where it is very undesirable. It causes serious mechanical
process and corrosion problems in oil field facilities. Thus it is essen-
tial to predict slugging characteristics so as to be able to reach a safe,
economic and efficient design in applications such as these. Thus
many researchers have been interested in Taylor bubble flow and
various investigations have been carried out on this subject. In order
to understand the hydrodynamics of such a complex flow, the first
step has been to study a single gas slug evolving in a vertical pipe.

The rise velocity of Taylor bubbles depends on the pipe diame-
ter and its inclination angle, the physical properties of gas and li-
quid phases (density, viscosity and surface tension), and the flow
ll rights reserved.

: +33 383 595 551.
cy.fr (O. Caballina).
by using dimensional analysis, the main dimensionless numbers
which govern the motion of Taylor bubbles in pipes: Bond
ðBo ¼ gðqL � qGÞD

2=rÞ, Froude (Fr ¼ Ub=
ffiffiffiffiffiffi
gD

p
Þ and Morton (Mo ¼

gl4
L=qLr3Þ numbers, where D is the pipe diameter, Ub is the Taylor

bubble mean velocity, qL and qG are the liquid and gas densities, lL

is the viscosity of the liquid, r stands for the surface tension and g
is the gravity. Other dimensionless numbers could be used, e.g.,
Collins et al. (1978) used Froude number as a unique function of
Morton number and a dimensionless inverse viscosity number,
Nf , given by Nf ¼ qLg

1
2D

3
2=lL ð� ReÞ. It is known that in cylindrical

tubes of diameter D, for a Taylor bubble motion in a liquid of kine-
matic viscosity m, high Reynolds number bubbles ðRe � UbD=m� 1Þ
are characterized by:

Ub ¼ Fr
ffiffiffiffiffiffi
gD

p
ð1Þ

The first studies on the bubble rise velocity in circular cross section
pipes and in stagnant fluids, were carried out byDumitrescu (1943),
Davies and Taylor (1950). These studies were limited to the case of
bubbles moving in low viscous liquids and where the surface ten-
sion effects were considered to be negligible. According to the liter-
ature, these conditions are satisfied when Nf > 300 (negligible
viscosity regime) and Bo > 100 (negligible surface tension). In this
case, the theoretical solution for a bubble rising in a stagnant col-
umn, is given by Eq. (1) where the Froude number is constant.
The estimated Froude number by Dumitrescu (1943), Davies and
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Taylor (1950) is 0.351 and 0.328, respectively. Comparison with
experimental results of White and Beardmore (1962), Nicklin et
al. (1962), Zukoski (1966) indicates that Dumitrescu’s estimate of
the Froude number Fr ¼ Ub=

ffiffiffiffiffiffi
gD

p
is the most accurate one and

agrees well with experiment. Dumitrescu also studied the effect
of surface tension by investigating the influence of the interface cur-
vature. He observed the bubble propagation in tubes whose diame-
ter is comparable with the capillary length lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=qg

p
. His

experimental results for air bubbles in water showed that Eq. (1)
is valid only within the limit D=lc > 4

ffiffiffi
2
p

or Bo > 64. Below this lim-
it, Fr is no longer constant but decreases as the Bond number,
ðBo ¼ 2ðD=lcÞ2Þ does. The effects of surface tension were also stud-
ied by other authors. Tung and Parlange (1976), Bendiksen (1985)
investigated theoretically the influence of surface tension on bubble
motion. Both found that surface tension monotonically reduces the
rise velocity and this was in agreement with their experiments as
well as with the experiments of Zukoski (1966). The simplified re-
sult of Bendiksen given by Fabre and Line (1992) can be written as:

Fr ¼ 0:344
1� 0:96 expð�0:0165BoÞ
ð1� 0:52 expð�0:0165BoÞÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 20

Bo
1� 6:8

Bo

� �s
ð2Þ

Thus in a quiescent fluid with moderated viscosities, the velocity Ub

can be calculated from a relationship Fr ¼ f ðBoÞ. For Taylor bubbles
in co-current flow, the rise velocity can be predicted from Nicklin’s
equation (Nicklin et al., 1962) Ub ¼ Ub0 þ C0Um, where Um is the mean
velocity of liquid flow in the pipe and Ub0 is the Taylor bubble velocity
in stagnant conditions. Coefficient C0 takes value of around 1.2 when
the liquid flow is turbulent and around 2.0 when it is laminar.

van Hout et al. (2002) were one of the first ones to perform PIV
measurements in slug flow for air–water systems, for stagnant
water in the pipe. They determined separately the flow pattern
around a single gas slug and the bubble shape. In recent works, this
subject was studied for the case of Taylor bubble motion in stag-
nant newtonian and non newtonian liquids (Sousa et al., 2005,
Nogueira et al., 2006) and the bubble shape was obtained more
precisely by using the simultaneous particle image velocimetry
technique (PIV) and pulsed shadow technique (PST).

As reviewed above, several articles have been published on the
Taylor bubble motion in vertical tubes in the case of steady flow.
However, in almost all the industrial processes, the flow is unsteady,
for example when the pipe undergoes vibrations. In this condition
the steady models presented in previous works could not be vali-
dated. Unfortunately this subject has remained largely unaddressed.

Brannock and Kubie (1996) were the first to perform an experi-
mental investigation on the motion of Taylor bubbles in 2 m long
vertically oscillating vertical pipes with internal diameters of 22
and 44 mm. They were subjected to a perfect sinusoidal vertical mo-
tion with the oscillation amplitudes b of 50, 100 and 200 mm and
acceleration bx2 of 0 (stationary vertical pipe), 1, 5, 10 and
15 ms�2 with x the angular frequency. In all these cases, rise veloc-
ity decrease with the relative acceleration a ¼ bx2=g was observed.
They indicated a good agreement between the experimental data
and their semi-empirical approach. In order to predict this decrease,
Brannock and Kubie (1996) assumed that the instantaneous bubble
velocity, UbðtÞ, can be deduced from Eq. (1) by replacing g by gE

where gE is a ‘‘pseudo” effective acceleration. They proposed:
gE ¼ max½ðg þ bx2sinxtÞ;0�. This choice is not very clear and is not
based on any scientific argument. Its only interest is to have a posi-
tive quantity under the root of Eq. (1) when the relative acceleration
a becomes greater than 1. Then the average bubble velocity was cal-
culated by: �Ub ¼ ð1=TÞ

R T
0 UbðtÞdt, where T is the periodic time. Com-

paring with their experimental results, they found that the
‘‘theoretical” results underpredict the reduction in �Ub=Ub0 . Thus by
considering the bubble nose distortions which become more impor-
tant at high relative accelerations, they introduced a critical relative
acceleration ac , at which the bubble is completely broken up, in the
rise velocity expression and they proposed:

�Ub=Ub0
¼ 1� a

ac

� �n
2 1

T

Z T

0
ðmax½ð1þ a sin xtÞ;0�Þ1=2dt ð3Þ

where Ub0 is the velocity of the Taylor bubble at x ¼ 0. The critical
relative acceleration, ac , and the exponent n was found experimen-
tally to be equal to 1.7 and 0.05, respectively. Kubie (2000) also
studied experimentally the velocity of long bubbles in horizontally
oscillating vertical tubes, but this configuration is different of our
investigation. In this last case, Kubie (2000) found that the velocity
ratio increases with the relative acceleration, a.

Clanet et al. (2004) developed an analytical model in order to
analyze the propagation of Taylor bubble in an oscillating vertical
tubes. It should be noted that in their case the surface tension ef-
fects are considered to be negligible and the bubble nose is as-
sumed to be undeformable. By projection of the Euler equation
onto the interface and by assuming a potential motion along the
bubble, they obtained the following differential equation:

dUb

dt
þ k0U2

b � gð1� a sin xtÞ ¼ 0 ð4Þ

where k0 ¼ 7:66=D leading to a Fr ¼ 0:361 for steady state regimes.
Clanet et al. decomposed the velocity UbðtÞ into a mean and fluctu-
ating part: UbðtÞ ¼ �Ub þ Uf ðtÞ and used a numerical method in order
to determine �Ub. They found that the mean velocity reaches zero for
a critical reduced acceleration, ac of about 1.7 which is in good
agreement with the experimental observations of Brannock and Ku-
bie (1996).

Madani et al. (2007) carried out an experimental investigation
on the motion of a Taylor bubble moving in water under gravity
and vertical oscillating motion generated by a vibrating plate. Their
experiments were carried out for different frequencies where the
oscillation magnitude b was equal to 5 mm and 20 mm. A very
small influence of the oscillation amplitude on the bubble velocity
was observed for weak relative accelerations. The evolution of the
bubble length for different frequencies were investigated and the
small linear evolution of bubble length with the oscillating plate
was observed. The effects of quasi-steadiness were also studied
by determining Froude and Bond numbers and were found to be
more important for high frequencies.

In the present study, this work is extended for different pipe
diameters and by using other fluid–gas combinations. As referred
above, only two other researchers focused on the unsteady flow of
Taylor bubbles and they were only interested in the mean rise veloc-
ity of long bubbles. So it appeared legitimate to us to start an exper-
imental study on this topic in order to understand the complex
nature of slug flows in quasi-steady conditions. In this work, we car-
ry out an experimental investigation on the motion of a Taylor bub-
ble moving in a non viscous (low viscosity) quiescent liquid under
gravity and vertical oscillating motion generated by a vibrating
plate. The bubble motion is obtained by using high-speed video
tracking and subsequent image processing methods. The average
rise velocity, the fluctuating velocity, the phase shift with the oscil-
lating plate are measured. From these results, the effects of quasi-
steadiness are studied by defining and determining two unsteady
dimensionless numbers: Froude and Bond numbers.

2. Experimental set-up, measurement techniques and data
processing

2.1. Experimental set-up

The experimental facility consists of a mechanical system con-
taining a vertically oscillating plate and a closed column filled with
a low viscous fluid and a small quantity of gas to generate the
Taylor bubble (Fig. 1).



Fig. 1. Sketch of the experimental set-up.
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This oscillating system is discussed in more details in Abbad
and Souhar (2004).

The mechanical system includes a fixed heavy steel frame and a
light plate, being able to carry out a vertical sinusoidal motion. This
oscillating motion is obtained by using four hydraulic cylinders
fixed at the frame and an electric motor to which a steel disc is
fixed. A connecting rod fixed on one side at the disc, and on the
other side at the plate, transforms the rotational movement of
the motor into the vertical oscillatory motion of the plate. In this
study the oscillation amplitude b is equal to 5 mm and the rod
length L is 500 mm. In this case the small ratio b=L allows a quasi-
perfect sinusoidal motion (Abbad and Souhar, 2004) modeled by:

zplate ’ b sinðxtÞ ð5Þ

The oscillation frequencies can go up to 10 Hz. They are measured
by means of an infra-red ray emitting fork fixed at the heavy frame
and of a screw fixed on one lateral edge of the oscillating plate. By
starting the system, the cut-off frequency of the rays by this screw
gives us the oscillation frequency of the plate, which can be read by
using an oscilloscope.

The two test sections used are vertical cylindrical glass tubes of
1200 mm and 1000 mm in length with respective internal diame-
ters, D, of 9.8 mm and 20 mm. On both ends of each tube, tight stop-
pers are placed to allow to fill and empty it. On the tube a metal
column is fixed with collars. This column is fixed to the oscillating
plate by means of a metal stem fixed at the plate and of a housing
bearing fixed at the metal column. The fixing system allows the pipe
to rotate around the stem axis (Fig. 2). The Taylor bubble is obtained
by two steps. First, a small volume of air is left when filling the tube
with the testing fluid. Then the tube is turned around the stem axis
and is blocked against a stop after a rotation of 180�. Here, the air vol-
ume at the bottom of the pipe with the density lower than water den-
sity rises in the form of a Taylor bubble under gravity along the tube.
The bubble length, l, is determined by the air volume left in the pipe.
The ratio l=D for the two pipe diameters, 9.8 and 20 mm, is about 5
and 3.6, respectively.

2.2. Measurement technique and image processing

The Taylor bubble motion is filmed by means of a high-speed vi-
deo camera system FASTCAM-ultima APX RS (Photron company)
provided with a CMOS sensor of 1024� 1024 pixels. Images can
be recorded at a frequency up to 3000 Hz in full frame, and up to
250,000 at a resolution of 128� 16. The camera is connected to a
PC via an IEEE1394 digital interface and can be controlled using
Photron’s PFV software. It should be noted that this camera allows
for a higher precision than the CCD camera (sensor with 640� 240
pixels) used previously (Madani et al., 2007).

The camera is fixed on an adjustable support which allows posi-
tioning of the camera vertically so as to fit to a field of view where
the bubble has reached its average terminal velocity. The use of a
LED area backlighting provides a homogeneously diffuse light for
high-contrast images. Fig. 3 shows a front view of the experimental
set-up. We can see for the example given on this figure that the
resolution of the camera is about 0:24 mm pixel�1 in z-direction.
The images are recorded at 250 images/s with the resolution of
512� 1024 pixels.

The recorded sequences of the bubble motion are then processed
by using the Matlab image processing toolbox. Image analysis con-
sists in determining the bubble nose position as well as the plate po-
sition in time. We give an example in Fig. 4 showing the succesive
steps of image processing namely: (a) reading of the raw image
(Fig. 4a), (b) definition of a region of interest ROI (Fig. 4b), (c) binari-
zation of the ROI by thresholding (Fig. 4c). As we can see when zoom-
ing in on the binary images, the bubble nose thickness in almost all
the cases is about 4 pixels. The bubble nose detection consists in
finding two black pixels corresponding to the maximum z-coordi-
nate on the external and on the internal bubble nose. The nose z-
coordinate zn will be the average of these two values. The same pro-
cedure is undertaken to extract the motion of the oscillating plate
zplate by locating graduations of a ruler fixed on the support of the
pipe (Fig. 4c and d). It should be pointed out that the camera and
so the measurements of zn are done in the fixed reference frame.

2.3. Data processing

In the field of view, the nose position znðtÞ, the relative position
zrðtÞ ¼ znðtÞ � zplateðtÞ, and the relative velocity of the Taylor bubble
UrðtÞ in the first approximation can be formulated as:

znðtÞ ¼ zn0 þ zn1 sinðxt þ /nÞ þ �Ubt ð6Þ
zrðtÞ ¼ zr0 þ zf sinðxt þ /Þ þ �Ubt ð7Þ



Fig. 2. Rotating system, pipe and metal plate before and after rotation.

Fig. 3. Photograph of a Taylor bubble rising through 9.8 mm inner-diameter pipe
filled with water at f ¼ 5 Hz.
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and by differentiating the Eq. (7):

UrðtÞ ¼ Uf cosðxt þ /Þ þ �Ub ð8Þ

where �Ub is the mean velocity of the bubble and zf ;Uf and / are,
respectively, the displacement magnitude, the fluctuating velocity
and the phase shift with the oscillating plate. These different
parameters are determined by an optimization technique using
the nonlinear least squares method (see Coleman and Li (1996)).

The accuracy of the model function is checked by examining the
residue (Rz ¼ zopt � zmesÞ, difference between the measured trajec-
tories zmes and the modeled trajectories zopt , which should be a ran-
dom variable having a null average. Then, the probability function
of the residue is compared with the gaussian probability law.
Moreover the frequency spectrum of the modeled and measured
trajectories are obtained by using a Fourier transform. It is con-
firmed that the difference between the modeled value and the
experimental value is very weak. No variation of amplitude, and
no phase shift is generated by the residue.

Phase shifts measurements are very sensitive and are carried
out by using an optimization method and also manually. The man-
ual method consists in measuring the delay (ssÞ between the peri-
odic trajectories of the plate and the Taylor bubble. The phase shift
is then obtained by the relation / ¼ 2pfss with a maximum abso-
lute error of about ±7�.

2.4. Experimental conditions

In our study, two pipes with internal diameters, D, of 9.8 and
20 mm are used. The experiments are carried out for 10 frequen-
cies ranging from 1 Hz to 8.8 Hz, and for the oscillation magnitude
b equal to 5 mm. For each frequency, the experiment is repeated at
least three times in order to verify the reproducibility and the dis-
persion of the results is found to be less than �5%. In the present
study, the tests are carried out at temperatures between 18 �C and
22 �C. The physical properties of the four tested liquids are given at
20 �C in Table 1.

3. Results and discussion

As an example, Fig. 5a presents the position of the plate re-
corded at 250 images/s and for an oscillation frequency of 5 Hz.
It is clear that the optimization provides a correct description of
the plate trajectory and the maximum frequency deviation is less
than 0.2%. The residue zplopt

� zplmes
is very weak, its average is al-

most zero and follows a gaussian probability law (Fig. 5b). The
standard deviation of the residue in this case is r ’ 0:15 mm
which is less than one pixel. That is also confirmed in Fig. 5c where
the frequency spectrum is illustrated. Only a single significant peak
frequency is observed and hence the motion of the plate can be
considered as quasi-sinusoidal.



Fig. 4. Steps of image processing: (a) reading the raw image, (b) definition of ROI (test column), (c) binarization, (d) ruler, and (e) binarization (f ¼ 5 HzÞ.

Table 1
Experimental conditions and physical properties of the fluids used at 20 �C.

Fluid qL ðkg m�3Þ lL (mPa s) r ðmN m�1Þ D (mm) lc
D

Water 998 1.05 72 9.8 0.39
Aniline 1020 3.77 43 9.8 0.3
Ethanol 789 1.078 22 9.8 0.23
Carbon tetrachloride 1590 0.901 27 9.8 0.19
Water 998 1.05 72 20 0.19
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For the same frequency, the trajectory of the bubble in water is
shown in Fig. 6a. The mean rise velocity �Ub as well as the fluctuat-
ing velocity Uf can be deduced from derivatives of the optimized
curves. In Fig. 6b, the average motion is subtracted and the bubble
oscillation around the zero mean position is plotted. Here again an
excellent optimization is observed which can be justified by the
residue which has a null average and follows a quasi-gaussian
probability law ðr ’ 0:17 mmÞ as shown in Fig. 7a. This can be con-
firmed from the frequency spectrum (Fig. 7b). The same proce-
dures are carried out for other frequencies and in all cases our
approximation model describes correctly the plate and the Taylor
bubble trajectory.

3.1. Physical mechanism of the Taylor bubble propagation

In order to understand the physical behavior of the bubble nose
in its sinusoidal motion, the temporal evolution of the oscillating
plate and the bubble position, namely zplateðtÞ and zbubbleðtÞ, as well
as the relative velocity UrðtÞ and the effective acceleration gEðtÞ are
plotted in Fig. 8.
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The analysis of these figures shows that when the plate goes
through the position zplate ¼ 0, where gðtÞ ¼ g (point B in Fig. 8a),
the relative velocity of the Taylor bubble Ur is about Ub0. This sug-
gests that the shape of the nose of the Taylor bubble at point B re-
mains close to that in stagnant fluid. Therefore the curvature n0 at
the nose of the Taylor bubble without oscillation: nB ’ n0, and
n0 ’ 5:3=D according to Dumitrescu (1943).

In the following, the effects of the relative velocities will be as-
sumed small comparatively to the effects of the surface tension,
gravity and inertia forces. In other words the quasi-hydrostatic sit-
uation in the oscillating reference frame is assumed. In these con-
ditions we have:

Pi þ qigZð1� a sin xtÞ ¼ cste ¼ Ci ð9Þ

where the subscript i stands for liquid (l) or gas (g), and Z is the ver-
tical coordinate of the point defined by starting from the top of the
tube (see Fig. 9). Over one period T, Z can be considered constant
ðZ < 0Þ, and thus Eq. (9) is reduced to:

Pi � qigZa sinxt ¼ cste ¼ C 0i ð10Þ

By writing Eq. (10) in the liquid and gas and by taking into account
that Pg � Pl ¼ rn at the nose of the bubble, we obtain:

rðn� n0Þ þ ðql � qgÞgZ sin xt ¼ 0 ð11Þ

where the reference time t = 0 is taken at point B.

– At point B, t ¼ 0 and n ¼ n0, the classic situation: n ¼ n0 and
Ub ’ Ub0, is found, as described previously.

– At point A: t ¼ �T=4, Eq. (11) leads to nA < n0. In other
words, the nose of the Taylor bubble flattens, as shown in
Fig. 9 (position A). Consequently, the flow of the downward
liquid Q w and also the velocity Ur of the bubble decrease
(because Ub � Qw). This is in agreement with the results of
measurement indicated in Fig. 8c.
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– At point C: t ¼ T=4, Eq. (11) leads to nC > n0. In other words
the nose of the Taylor bubble adopts a curvature higher than
in the stagnant case, as is shown in Fig. 9 (position C). Con-
sequently, the flow of the downward liquid Q w and also the
velocity Ur of the bubble increase (because Ub � Q w). This is
in agreement with the results of measurement indicated in
the Fig. 8c.

Moreover, at point A, the curvature nA decreases and can even
reverse and change the sign when the relative acceleration a in-
creases. The experiment shows that there exists a critical value
ac , from which an interface disturbance is formed. This distur-
bance is propagated downward the Taylor bubble in the form
of a wave, as it is indicated in the Fig. 9 and on the photograph
in Fig. 10. Its evolution over time against the bubble nose is
shown in Fig. 8e. The mean velocity of convection of the wave
relatively to the nose of the bubble is about l=ðT=2Þ where l is
the length of the bubble, and the maximum velocity reached re-
mains close to the velocity of the liquid in film. This last point
will be clarified in a forthcoming work by making changes to
the test section which make it possible to enhance precision in
determining the interface deformation and the behavior of the
film. We are also interested in a predictive model allowing to
evaluate ac.
3.2. Pipe diameter effect on the Taylor bubble motion

To examine the pipe diameter effect, the bubble motion in
water for two pipes with internal diameters of 9.8 mm and
20 mm is studied for different frequencies.

The mean rise velocity �Ub evolution with the relative accelera-
tion a is shown in Fig. 11. We can observe that when the pipe is
not subjected to the oscillating motion, the mean rise velocity for
the two pipe diameters is, respectively, Ub0 ¼ 6:9 cm/s and



Fig. 9. Sketch of bubble nose deformation during one half period. The dashed line
corresponds to the shape of the Taylor bubble in stagnant fluid. The right-hand part
of the figure is a sketch of the formation of the wave at the nose and shows its
convection downward to the bottom.

Fig. 10. Photograph of the Taylor bubble at t ¼ t0 and t ¼ t0 þ Dt;Dt ¼ 0:008 s, for
f ¼ 7 Hz, D ¼ 9:8 mm, a ¼ 1:08 – appearance of wave propagation.
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Fig. 11. Evolution of the bubble mean rise velocity, �Ub with the relative acceleration
a, for water: 	, D = 9.8 mm; j, D = 20 mm.

370 S. Madani et al. / International Journal of Multiphase Flow 35 (2009) 363–375
Ub0 ¼ 14:5 cm/s. Given these values and using Eq. (1), the Froude
number is, respectively, equal to 0.22 and 0.327 with the corre-
sponding Bond number of 13.05 and 54.4. Thus for the pipe with
the smaller diameter the Froude number obtained is almost the
same as that obtained using Eq. (2) ð� 0:23Þ in which the surface
tension effects are taken into account. For the pipe with a diameter
of 20 mm the Froude number obtained agrees much more to that
obtained by Davies and Taylor (1950) (0.328). These results are
consistent with those published in the literature for both cases,
with or without surface tension effect.

Under relative acceleration, the bubble mean rise velocity �Ub

decreases until a critical value of the acceleration a, where the
velocity starts increasing. This tendency is the same for both pipe
diameters but it seems that for D ¼ 20 mm, the velocity increase
occurs when the relative acceleration is greater than ac ’ 1:5 while
for D ¼ 9:8 mm the velocity increase can be observed from ac ’ 1.
By analyzing the images obtained by camera and for the two pipe
diameters, we can observe when a > ac the creation of small waves
which move downward along the bubble and accelerate slightly
the bubble motion by pushing the liquid film downward as shown
in Fig. 10. This can probably explain the increase in rise velocity
after the critical relative acceleration. Nevertheless, there could
be another reason for the bubble velocity increase beyond ac . As
can be seen in Fig. 10 the two waves on both sides of the bubble
are not symmetric. This will cause the bubble to be unaxisymmet-
ric similar to the situation described by Kubie (2000) in horizon-
tally oscillating vertical pipes. In this case the downward liquid
film flow rate increases in one side, and, as does the velocity of
the Taylor bubble as a consequence.

In order to compare our experimental results with the bubble
rise velocity results obtained by Brannock andKubie (1996), Clanet
et al. (2004), the velocity ratio, �Ub=Ub0 is plotted versus the relative
acceleration, a, in Fig. 12. As shown, for both experimental results
of Brannock and Kubie (1996) and analytical results of Clanet et al.
(2004), the velocity ratio, �Ub=Ub0 decreases as the relative acceler-
ation increases and this for all of the relative acceleration values.
As we can see, at the beginning our results concerning the pipe
diameter of 20 mm agree well with their results obtained for the
pipe diameter of 22 mm. But from a ’ 1 up to a ’ 1:5 the velocity
ratio decrease in our case is more significant (the difference is
about 10%). From a ’ 1:5 the velocity ratio increases in our exper-
iments without any break of the bubble contrary to the observa-
tions of Brannock and Kubie. These authors report that for a
relative acceleration greater than 1.6, the bubble is broken. This
difference in the ratio �Ub=Ub0 may be due to the way of determin-
ing the bubble mean rise velocity employed by Brannock and Kubie
(1996). They measured the mean velocity by �Ub ¼ L=t where L is a
fix distance of 1500 mm and t is the time taken by the bubbles to
cover this distance. This method is correct only when the time t is a
multiple of the period T ðt ¼ nT;n 2 NÞ. Consequently, the mea-
surements of �Ub by Brannock and Kubie (1996) cannot be consid-
ered very accurate. For the pipe diameter of 9.8 mm not
presented in Fig. 12, because no direct comparison with Brannock
or Clanet was available, the tendency observed by Brannock is only
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Table 2
Froude and Bond number values for stagnant fluids without oscillation, comparison
with Fabre and Line (1992).

Fluid D (mm) Fr0 Bo % Difference with Fabre

Water 9.8 0.22 13.05 0.9
Aniline 9.8 0.28 23.55 2.8
Ethanol 9.8 0.32 33.62 0.6
Carbon tetrachloride 9.8 0.33 57.4 3.6
Water 20 0.33 54.3 4
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confirmed for very weak relative accelerations ða < 1Þ. As the pipe
diameter is smaller than 20 mm, the effect of the surface tension
becomes important, which might cause the difference in the
results.

The fluctuating velocity Uf evolution with the relative accelera-
tion is first linear and then deviates from the linear trend (Fig. 13).
For D ¼ 9:8 mm the fluctuating velocity increase follows the linear
evolution up to a ¼ 1 and then deviates and slows down with
increasing the relative acceleration. For D ¼ 20 mm there is a first
jump from the linear tendency and subsequently a slowdown
trend. The line slope of the ratio Uf =Ub0 versus a is 1.24 and 0.58,
respectively. As illustrated in this figure, the fluctuant velocity de-
creases as the pipe diameter increases.

3.3. Influence of Liquid physical properties on the Taylor bubble motion

In this section, we present the experimental results obtained for
a Taylor bubble moving in a pipe of 9.8 mm diameter. Four low vis-
cous test liquids are tested in order to study the effects of the sur-
face tension. For the case of bubble motion in a stagnant liquid, the
experimental results obtained are in good agreement with Fabre
and Line (1992) correlation (Eq. (2)) as shown in Fig. 14 and in Ta-
ble 2.

For the four fluids used, the evolution of the mean velocity ratio,
�Ub=Ub0, with the relative acceleration is plotted in Fig. 15. As de-
scribed in the previous section, two zones can be distinguished.
The zone in which the velocity ratio decreases as the relative accel-
eration increases and the zone in which the velocity ratio increases
with the relative acceleration. As shown in Fig. 15, this tendency is
the same for the four fluids used. For a < 1, our results show that
the velocity ratio �Ub=Ub0 does not depend on the ratio lc=D and re-
mains in the same order as that found by Brannock and Kubie and
Clanet et al. For a > 1, it can be noted that except for water in the
small pipe, the ratio lc=Dð¼

ffiffiffiffiffiffiffiffiffiffiffi
2=Bo

p
Þ does not seem to influence the

evolution of the velocity ratio �Ub=Ub0. This probably suggests a crit-
ical value of ðlc=DÞc in the range of 0.3–0.39 such as for
lc=D < ðlc=DÞc , variations of �Ub=Ub0 do not depend on this parame-
ter. At this stage, we can not give a physical explanation taking into
account the complexity of the problem.
In Fig. 16, the evolution of the fluctuating velocity with the rel-
ative acceleration for the four test fluids is shown. We also add on
this figure the results concerning the bubble motion in water in the
pipe of 20 mm diameter. As illustrated, the evolution is linear for
a < 1. It can be remarked that for Carbon tetrachloride one data
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point ða ¼ 0:77;Uf =Ub0 ¼ 0:78Þ does not follow the linear behavior
but can be considered as outlier. So the general behavior for Carbon
tetrachloride is also a linear one for a < 1. Beyond this range, the
evolution is not linear anymore. It can be seen that decreasing
lc=D decreases the line slope. For bubble motion in ethanol, carbon
tetrachloride and in water when the pipe diameter is 20 mm, the
results obtained are almost the same. It can be noted that for these
three cases the ratio lc=D remains almost constant (’ 0:2). Thus
from these results we can exhibit the influence of the ratio lc=D
on the fluctuating velocity evolution. For the range a < ac , the ratio
�Uf =Ub0 can be written as: Uf =Ub0 � ka. And by estimating k plotted
versus lc=D (Fig. 17), we obtain: k ’ 3:2lc=D ¼ 3:2

ffiffiffiffiffiffiffiffiffiffiffi
2=Bo

p
. So, a cor-

relation of the ratio �Uf =Ub0 can be proposed:
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The maximum difference between the data points and the above
correlation is about �7%. From this correlation, it seems that when
Bo!1, the fluctuating velocity, Uf , tends to zero which means that
the bubble does not oscillate at high Bond numbers. Future experi-
ments are required in order to confirm and explain this probable
behavior.

3.4. Comparison with Clanet et al. (2004) model

In order to compare our experimental data with the numerical
results, Eq. (4) is solved numerically by using the 4th/5th-order
Runge–Kutta method. For each testing liquid and for D ¼ 9:8 mm
and D ¼ 20 mm, the instantaneous bubble velocity UbðtÞ is thus de-
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Fig. 18. Ratio Uf =Ub0
versus relative acceleration: 
, carbon tetrachloride; N, water

(D ¼ 20 mm); —-, numerical integration of Eq. (4), D ¼ 9:8 mm and Fr0 ¼ 0:33.
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duced. By using the relation k0 ¼ 1=Fr2
0D, the value of k0 is adjusted

for our cases of study. Then by using the least square fitting meth-
od as described in the previous paragraphs, the fluctuating veloc-
ity, the mean rise velocity and the phase shift were obtained and
compared to our experimental results. It should be noted that in
the numerical approach the surface tension effects are considered
to be negligible and the bubble nose is assumed to be undeform-
able. Thus we expect that Eq. (4) provides a good prediction of bub-
ble dynamics when lc=D ’ 0:2 and for the range of relative
acceleration a < 1. In these conditions we approach the horizontal
asymptote (Fig. 14) where the surface tension effects can be ne-
glected and the bubble can be considered to be undeformable be-
cause a < 1. As shown in Fig. 18, for lc=D ’ 0:2 (Carbon
tetrachloride and Water for D ¼ 20 mm) the numerical solution
agrees well with the experimental results for the range of a < 1.
Beyond this limit the bubble cannot be considered stable and the
bubble nose deformation with time should be taken into account.
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Fig. 20. Relative velocity evolution: (a) water,
So, it would be interesting to quantify the interface deformation
according to the oscillation frequency. This work requires modifi-
cations of the test column and will be carried out in the near
future.

The phase shifts / between the Taylor bubble and the oscillat-
ing plate are plotted in Fig. 19. The maximum error made here is
about �7
. For very weak relative accelerations the phase shift re-
mains almost constant ð’ 90
Þ and then decreases slowly. Here, as
observed for mean velocity ratios, two zones can be distinguished.
The phase shift decrease occurs in the limit a < 1. This tendency is
well predicted by the numerical results. Beyond this limit it in-
creases with a. As it can be seen, the results dispersion does not al-
low to predict the exact behavior and future studies are required
on this subject.

3.5. Unsteady condition effects

As explained above, by increasing the oscillation frequency the
fluctuating velocity increases. Fluctuating velocity becomes greater
than the mean rise velocity for high frequencies. In this case and
from the Eq. (8), the instantaneous relative velocity becomes neg-
ative which means that in each period a downward motion of the
bubble can be observed. In Fig. 20, the evolution of the relative
velocity in time is compared for two frequencies. While in case
(a) (Fig. 20a) there is no downward motion and the relative veloc-
ity is positive, when increasing the frequency, negative relative
velocity values will appear.

In order to study the effects of quasi-steadiness, we change the
definition of the Froude and Bond numbers such as:
~Fr ¼ UrðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gDð1� a sin xtÞ

p
; ~Bo ¼ ðqL � qGÞgD2½1� a sin xt�=r.

For a ¼ 0, we recover the classical definition. As for high fre-
quencies ða > 1Þ the term gDð1� a sin xtÞ becomes negative, the
above expressions are used only for the relative accelerations
smaller than one ða < 1Þ. Fig. 21 presents the computed results
from experimental data, for the frequency of 5 Hz and for the four
test liquids where Froude number, ~Fr, is plotted as a function of
Bond, ~Bo. On the same graph, the relation Fr � Bo proposed by
Fabre and Line (1992) for the case in which the Taylor bubble rises
in a quiescent fluid is also plotted. It can be seen that the evolution
of Froude with Bond is close to an ellipsoidal form. The ”ellipse”
center remains the same whatever the oscillation frequency and
is located on the steady curve (Fig. 22). By increasing the frequency
the ellipse thickens horizontally (Fig. 22). In fact, in this case, the
effects of quasi-steadiness become more significant. Consequently,
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the Eq. (2) which relates the Froude number to the Bond number
cannot be used in unsteady state flows.
4. Conclusion

In this paper we present an experimental study of unsteady
Taylor bubble motion in vertical oscillating pipes. The previous
works on this subject were limited to the determination of the
mean rise velocity of the bubble. In this study, by using video
tracking techniques, image processing and numerical processing,
accurate measurements of bubble mean and fluctuating velocity
and oscillation magnitude were carried out for different
frequencies.

The physical mechanism of the bubble propagation was de-
scribed by an elementary model. The bubble behavior (the defor-
mation of the interface and the formation of the wave) was
discussed in three cases corresponding to the three positions of
the oscillating plate over a period. Three cases were observed
and justified: a classic situation in which the bubble nose shape
is such as that in stagnant fluid, the case in which the bubble nose
flattens and the case were the radius of curvature of the bubble
nose is higher than that while rising in the stagnant fluid.

The influence of the pipe diameter and the liquid physical prop-
erties on the unsteady dynamics of long bubbles in vertical tubes
was studied. The evolution of the mean rise velocity reveals no
clear influence of the ratio lc=D. The only evident observation is
the different behavior of �Ub=Ub0 depending whether a < 1 or
a > 1. For a < 1, the velocity ratio �Ub=Ub0 does not depend on the
ratio lc=D and remains in the same order as that found in previous
works. For a > 1, it seems that there is a critical value of lc=D below
which variations of �Ub=Ub0 do not depend on this parameter. The
increase of the mean rise velocity for high relative accelerations
seems to be related to the wave formation on both sides of the
bubble. The fluctuating velocity, Uf , evolves linearly when a < 1
and the line slope decreases by decreasing lc=D. In this case it
was possible to propose a correlation to estimate Uf =Ub0.

The numerical results obtained by neglecting surface tension ef-
fects, using Clanet’s differential equation, could not predict well
the velocity evolution in particular for small Froude numbers and
pipe diameter. The effects of quasi-steadiness which become more
important by increasing the oscillation frequency were also stud-
ied by determining Froude and Bond numbers.

In the future, this experimental study may be extended to study
the unsteady force acting on the Taylor bubble at intermediate
Reynolds numbers. The bubble deformations will be studied in de-
tail in order to determine the interface characteristics and the
wave formation in high frequencies. Study of the entire flow field
around a Taylor bubble using a PIV technique will be also useful.
The works of van Hout et al. (2002), Sousa et al. (2005), Nogueira
et al. (2006) will lead us to determine precisely the bubble inter-
face shape as well as the velocity profiles in the liquid film, nose
and wake regions.
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